ESD Protection Diode

Low Clamping Voltage

This integrated surge protection device is designed for applications requiring transient overvoltage protection. It is intended for use in sensitive equipment such as computers, printers, business machines, communication systems, medical equipment, and other applications. Its integrated design provides very effective and reliable protection for four separate lines using only one package. These devices are ideal for situations where board space is at a premium.

Features

- Low Clamping Voltage
- Small SOT-553 SMT Package
- Stand Off Voltage: 3 V
- Low Leakage Current
- Four Separate Unidirectional Configurations for Protection
- ESD Protection: IEC61000-4-2: Level 4 ESD Protection MILSTD 883C - Method 3015-6: Class 3
- Complies to USB 1.1 Low Speed & Full Speed Specifications
- These are Pb-Free Devices

Benefits

- Provides Protection for ESD Industry Standards: IEC 61000, HBM
- Protects Four Lines Against Transient Voltage Conditions
- Minimize Power Consumption of the System
- Minimize PCB Board Space

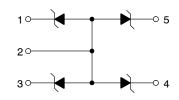
Typical Applications

- Instrumentation Equipment
- Serial and Parallel Ports
- Microprocessor Based Equipment
- Notebooks, Desktops, Servers
- Cellular and Portable Equipment

MAXIMUM RATINGS (T_A = 25°C unless otherwise noted)

Characteristic	Symbol	Value	Unit
Peak Power Dissipation (Note 1)	P_{PK}	20	W
Steady State Power – 1 Diode (Note 2)	P_{D}	380	mW
Thermal Resistance, Junction-to-Ambient Above 25°C, Derate	$R_{ heta JA}$	327 3.05	°C/W mW/°C
Maximum Junction Temperature	T _{Jmax}	150	°C
Operating Junction and Storage Temperature Range	T _J T _{stg}	-55 to +150	°C
Lead Solder Temperature (10 seconds duration)	TL	260	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.


- 1. Non-repetitive current per Figure 5.
- Only 1 diode under power. For all 4 diodes under power, P_D will be 25%. Mounted on FR-4 board with min pad.

See Application Note AND8308/D for further description of survivability specs.

ON Semiconductor®

www.onsemi.com

SCALE 4:1

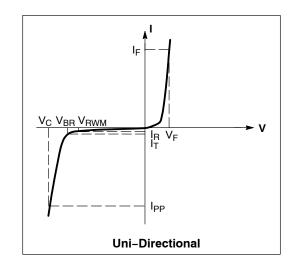
SOT-553 CASE 463B PLASTIC

MARKING DIAGRAM

xx = Device Code
M = Date Code*
= Pb-Free Package
(Note: Microdot may be in either location)

ORDERING INFORMATION

Device	Package	Shipping [†]
NZQA5V6AXV5T1	SOT-553*	4000/Tape & Reel
NZQA5V6AXV5T1G	SOT-553*	4000/Tape & Reel
NZQA6V8AXV5T1	SOT-553*	4000/Tape & Reel
NZQA6V8AXV5T1G	SOT-553*	4000/Tape & Reel
NZQA6V8AXV5T3	SOT-553*	16000/Tape & Reel
NZQA6V8AXV5T3G	SOT-553*	16000/Tape & Reel


[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

^{*}This package is inherently Pb-Free.

ELECTRICAL CHARACTERISTICS

(T_A = 25°C unless otherwise noted)

Symbol	Parameter
I _{PP}	Maximum Reverse Peak Pulse Current
V _C	Clamping Voltage @ I _{PP}
V _{RWM}	Working Peak Reverse Voltage
I _R	Maximum Reverse Leakage Current @ V _{RWM}
V _{BR}	Breakdown Voltage @ I _T
I _T	Test Current
ΘV _{BR}	Maximum Temperature Coefficient of V _{BR}
I _F	Forward Current
V _F	Forward Voltage @ I _F
Z _{ZT}	Maximum Zener Impedance @ I _{ZT}
I _{ZK}	Reverse Current
Z _{ZK}	Maximum Zener Impedance @ I _{ZK}

ELECTRICAL CHARACTERISTICS (T_A = 25°C)

			eakdov Voltage @ 1 m/)	Cu	kage rrent @ V _{RM}		x @ I _{PP} te 4)	Capac @ 0 \ (p	yp citance / Bias F) te 3)	Capac @ 3 \ (p	/p itance / Bias F) :e 3)	v _c
Device	Device Marking	Min	Nom	Max	V _{RWM}	I _{RWM} (μΑ)	V _C (V)	I _{PP} (A)	Тур	Max	Тур	Max	Per IEC61000-4-2 (Note 5)
NZQA5V6AXV5	5P	5.3	5.6	5.9	3.0	1.0	13	1.6	13	17	7.0	11.5	Figures 1 and 2 (See Below)
NZQA6V8AXV5	6H	6.47	6.8	7.14	4.3	1.0	13	1.6	12	15	6.7	9.5	

- 3. Capacitance of one diode at f = 1 MHz, $V_R = 0$ V, $T_A = 25^{\circ}$ C 4. Surge current waveform per Figure 5.
- 5. For test procedure see Figures 3 and 4 and Application Note AND8307/D.

Figure 1. ESD Clamping Voltage Screenshot Positive 8 kV Contact per IEC61000-4-2

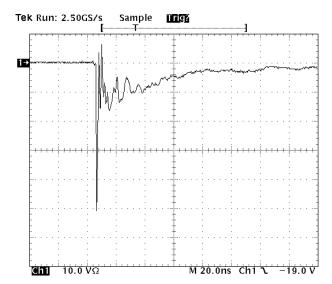


Figure 2. ESD Clamping Voltage Screenshot Negative 8 kV Contact per IEC61000-4-2

^{*}See Application Note AND8308/D for detailed explanations of datasheet parameters.

IEC 61000-4-2 Spec.

Level	Test Volt- age (kV)	First Peak Current (A)	Current at 30 ns (A)	Current at 60 ns (A)
1	2	7.5	4	2
2	4	15	8	4
3	6	22.5	12	6
4	8	30	16	8

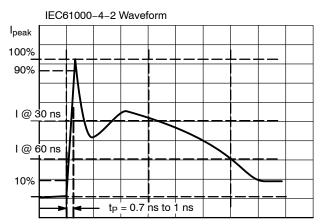


Figure 3. IEC61000-4-2 Spec

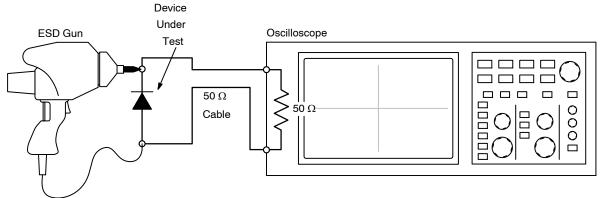


Figure 4. Diagram of ESD Test Setup

The following is taken from Application Note AND8308/D – Interpretation of Datasheet Parameters for ESD Devices.

ESD Voltage Clamping

For sensitive circuit elements it is important to limit the voltage that an IC will be exposed to during an ESD event to as low a voltage as possible. The ESD clamping voltage is the voltage drop across the ESD protection diode during an ESD event per the IEC61000-4-2 waveform. Since the IEC61000-4-2 was written as a pass/fail spec for larger

systems such as cell phones or laptop computers it is not clearly defined in the spec how to specify a clamping voltage at the device level. ON Semiconductor has developed a way to examine the entire voltage waveform across the ESD protection diode over the time domain of an ESD pulse in the form of an oscilloscope screenshot, which can be found on the datasheets for all ESD protection diodes. For more information on how ON Semiconductor creates these screenshots and how to interpret them please refer to AND8307/D.

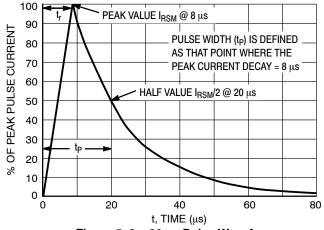


Figure 5. 8 x 20 μs Pulse Waveform

TYPICAL ELECTRICAL CHARACTERISTICS - NZQA6V8AXV5

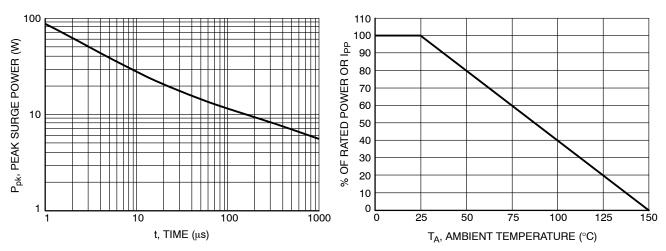


Figure 6. Pulse Width

Figure 7. Power Derating Curve

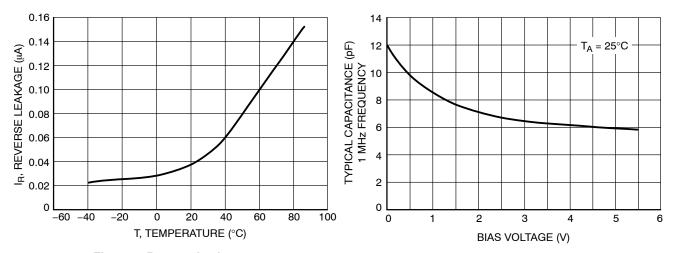


Figure 8. Reverse Leakage versus Temperature

Figure 9. Capacitance

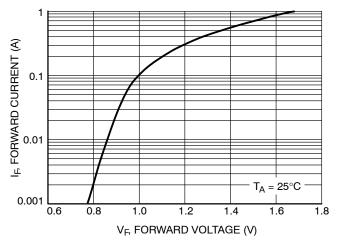
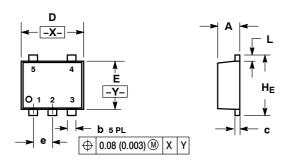
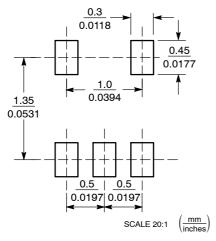



Figure 10. Forward Voltage



SOT-553, 5 LEAD CASE 463B ISSUE C

DATE 20 MAR 2013

RECOMMENDED SOLDERING FOOTPRINT*

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

NOTES:

- NOTES:

 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.

 2. CONTROLLING DIMENSION: MILLIMETERS

 3. MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH
 THICKNESS: MINIMUM LEAD THICKNESS IS THE MINIMUM
 THICKNESS OF BASE MATERIAL.

	MILLIMETERS				INCHES	
DIM	MIN	NOM	MAX	MIN	NOM	MAX
Α	0.50	0.55	0.60	0.020	0.022	0.024
b	0.17	0.22	0.27	0.007	0.009	0.011
С	0.08	0.13	0.18	0.003	0.005	0.007
D	1.55	1.60	1.65	0.061	0.063	0.065
E	1.15	1.20	1.25	0.045	0.047	0.049
е		0.50 BSC 0.020 BSC				
L	0.10	0.20	0.30	0.004	0.008	0.012
HE	1.55	1.60	1.65	0.061	0.063	0.065

GENERIC MARKING DIAGRAM*

XX = Specific Device Code

M = Date Code

= Pb-Free Package

(Note: Microdot may be in either location)

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " ■", may or may not be present.

STYLE 1: PIN 1. BASE 2. EMITTER 3. BASE 4. COLLECTOR 5. COLLECTOR	STYLE 2: PIN 1. CATHODE 2. COMMON ANODE 3. CATHODE 2 4. CATHODE 3 5. CATHODE 4	STYLE 3: PIN 1. ANODE 1 2. N/C 3. ANODE 2 4. CATHODE 2 5. CATHODE 1	STYLE 4: PIN 1. SOURCE 1 2. DRAIN 1/2 3. SOURCE 1 4. GATE 1 5. GATE 2	STYLE 5: PIN 1. ANODE 2. EMITTER 3. BASE 4. COLLECTOR 5. CATHODE
STYLE 6: PIN 1. EMITTER 2 2. BASE 2 3. EMITTER 1 4. COLLECTOR 1 5. COLLECTOR 2/BASE 1	STYLE 7: PIN 1. BASE 2. EMITTER 3. BASE 4. COLLECTOR 5. COLLECTOR	STYLE 8: PIN 1. CATHODE 2. COLLECTOR 3. N/C 4. BASE 5. EMITTER	STYLE 9: PIN 1. ANODE 2. CATHODE 3. ANODE 4. ANODE 5. ANODE	

DOCUMENT NUMBER:	98AON11127D	Electronic versions are uncontrolle	
STATUS:	ON SEMICONDUCTOR STANDARD	accessed directly from the Document versions are uncontrolled except	' '
NEW STANDARD:		"CONTROLLED COPY" in red.	
DESCRIPTION:	SOT-553, 5 LEAD		PAGE 1 OF 2

DOCUMENT	NUMBER:
98AON11127	'D

PAGE 2 OF 2

ISSUE	REVISION	DATE
Α	ADDED STYLES 3-9. REQ. BY D. BARLOW	11 NOV 2003
В	ADDED NOMINAL VALUES AND UPDATED GENERIC MARKING DIAGRAM. REQ. BY HONG XIAO	27 MAY 2005
С	UPDATED DIMENSIONS D, E, AND HE. REQ. BY J. LETTERMAN.	20 MAR 2013

ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights or the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer pu

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT: Email Requests to: orderlit@onsemi.com

onsemi Website: www.onsemi.com

TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support:

Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

onsemi:

NZQA5V6AXV5T1 NZQA6V8AXV5T1 NZQA6V8AXV5T1 NZQA6V8AXV5T1 NZQA6V8AXV5T2 NZQA6V8AXV5T3 NZQA6V8AXV5T3 NZQA6V8AXV5T3 NZQA6V8AXV5T3